A Method for Estimating Origin-destination Matrix of Public Transit Based on Smart Card and AVL Data
-
摘要: 公交 IC 卡收费系统和车辆定位系统的广泛应用,为获取公交客流 OD 提供了新的途径。针对现有公交客流 OD 推导算法的不足,从上车站点识别和下车站点推导两方面入手,对公交客流 OD推导算法进行了改进。为了修正公交 IC 卡数据时间偏差,提高上车站点识别的准确性,在分析公交乘客上车刷卡行为的基础上,提出了基于 AVL 数据的公交 IC 卡数据时间修正方法。根据公交出行链的特性差异,将公交出行链划分为连续链和非连续链两大类,在此基础上,建立了不同公交出行链的下车站点推导模型,优化了下车站点推导流程。以苏州市的公交 IC 卡和 AVL 数据为例进行实例研究,通过对推导结果合理性的讨论分析,论证了改进算法的可行性和有效性。实践表明,改进后的公交客流 OD 推导算法流程清晰,易于程序实现,可以用于公交客流的自动分析。Abstract: The use of automated fare collection (AFC)systems and automated vehicle location (AVL)systems pro-vides a new way to obtain origin-destination (OD)matrix of public transit.In order to improve existing algorithms,this paper develops an improved algorithm for estimating the OD matrix of public transit using smart card and AVL data, which mainly consists of boarding and alighting location data.Based on analysis of AFC data of public transit passengers, a time correction model for smart card data is developed using the AVL data,in order to improve the accuracy of boarding locations.To optimize the inference of alighting locations,this paper divides trip chains of public transit into 2 major types,continuous and discontinuous,then proposes specific alighting inference models for them according to their distin-guish characteristics.The improved algorithm is applied to study the smart card and AVL data from the City of Suzhou, and its feasibility and validity is validated by the rationality of the results indirectly.The results show that the improved algorithm has an effective progress and easy to be programmed.It can be used to automate the analysis of passenger flows of public transit.
-
Key words:
- big data /
- public transit OD /
- smart card data /
- AVL data /
- boarding location /
- alighting location
点击查看大图
计量
- 文章访问数: 445
- HTML全文浏览量: 53
- PDF下载量: 3
- 被引次数: 0